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Abstract—Pointer analysis computes the set of memory loca-
tions that each pointer access can point to during hardware
runtime. The more sensitive the pointer analysis, the more
precise these sets are likely to be, reducing unnecessary sharing
of memory resources between instructions during high-level
synthesis (HLS) memory generation. Despite the importance
of precision, modern HLS tools typically sacrifice precision to
prioritise quicker analysis times, although there are several
pointer analyses that can produce reasonably precise points-
to sets within an acceptable amount of time. In this paper, we
explore the effects of precise pointer analysis within a modern
HLS tool (LegUp) on a set of benchmark programs (PTABen)
that are challenging to its original pointer analysis. We see precise
analysis that reduces unnecessary memory sharing, leading to
average LUT savings of 60% and runtime improvements of 42%.

I. INTRODUCTION

Pointer analysis determines the set of memory locations that
each pointer-related instruction can point to, referred to as
its points-to set. When high-level synthesis (HLS) tools syn-
thesise programs with pointers, these points-to sets influence
memory synthesis in terms of sharing of memory resources.
The more precise these points-to sets, the more likely the HLS
tool generates simple addressing circuitry between instructions
and memory resources.

The precision of pointer analysis can be improved by mak-
ing the analysis sensitive to certain features of the program.
The two common sensitivities [1], [2] that pointer analysis
can consider are flow and context [3]–[17]. Flow-sensitivity
considers the order in which memory operations are executed
whereas context-sensitivity considers the calling context of
functions. Although fully precise pointer analysis is undecid-
able [18], various precise pointer analyses can refine points-to
precision within an acceptable time on large codebases.

A common pointer analysis adopted by modern HLS
tools is Andersen analysis [19], which is a flow-insensitive
context-insensitive analysis. The output of Andersen anal-
ysis is instruction-agnostic, i.e. Andersen analysis only re-
lates variables. Hence, Andersen analysis can lead to over-
approximation of points-to relation between instructions and
variables, inducing unnecessary memory sharing within HLS.

Imprecise pointer analyses are especially attractive to mod-
ern HLS tools, since these tools tend to overlook precision in
favour of faster analysis times. For example, LegUp HLS uses
a variant of Andersen analysis [20], as it claims that the com-
piler community has developed fast insensitive analyses [21,
§4.11]. Bambu HLS [22] also uses this variant of Andersen
analysis. Vivado HLS [23] restricts non-trivial use of pointers

and typically converts pointer instructions into static LLVM
loads or stores.

In practice, the overheads of precise pointer analysis are less
problematic for HLS compilers because input programs tend
to be smaller, and synthesis times are much longer than pointer
analysis times. Séméria et al. [24] and Zhu et al. [13] claim
to support precise pointer analysis within HLS but they do not
evaluate the impact of precision on hardware quality or anal-
ysis times, both of which we address. Recent HLS works on
synthesising pointer-manipulating programs [25], [26], atomic
pointers [27], [28] and dynamic memory allocation [29]–[32]
are examples of non-trivial use of pointers, which will increase
the need for emphasis on points-to precision in the future.

In this paper, we leverage an existing flow-sensitive context-
sensitive pointer analysis tool within a modern HLS compiler.
In §II, we provide an example in which precise analysis
improves the quality of HLS-generated hardware. In §III, we
augment LegUp HLS [21] to utilise the flow- and context-
sensitive SVF pointer analysis [15], [16], instead of Andersen
analysis. In §IV, we demonstrate that SVF’s precise analysis
improves the quality of hardware generated by LegUp on a set
of programs from the PTABen benchmark suite [33], which
uses pointers non-trivially. When precise pointer analysis is
applied, the hardware generated for these programs has an
average LUT saving of 60% and runtime improvement of
42%. We also show that, although improving precision incurs
analysis time overheads, these overheads are mostly negligible
since the analysis times are within tens of milliseconds.

II. MOTIVATING EXAMPLE

In this section, we discuss an example that shows how
precise analysis influences the points-to relation between
instructions and memory variables in HLS. Consider the
program in Fig. 1a, which consists of four statements with a
pointer, p, and two variables, a and b. In the main function,
the first statement stores the address of a to pointer p. The
second statement calls function f, within which the third
statement stores the address of b to pointer p. Finally, the
fourth statement dereferences pointer p and returns its value.
We disable function inlining to avoid optimisations.

An LLVM-based HLS tool, such as LegUp, compiles this
C program into LLVM IR code similar to that shown in
Fig. 1b. The LLVM stores ¶ and · directly address p. The
dereferencing of *p in the C program is compiled to two
LLVM loads [34]. The first load ¸ directly addresses p and
the second load ¹ indirectly addresses the value loaded from



int *p, a = 10, b = 20;

__attribute__((noinline))
void f() { p = &b;}

int main() {
p = &a;
f();
return (*p);

}

(a) a program

@a = global i32 10 i32 main() {
@b = global i32 20 store i32* @a, i32** @p ¶
@p = global i32* null call void @f()

%1 = load i32** @p ¸
void @f(){ %2 = load i32* %1 ¹
store i32* @b, i32** @p · ret i32 %2
ret void }

}

(b) compiled LLVM IR
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Fig. 1. An example program to LLVM IR, which is provided to insensitive Andersen analysis and precise analysis, whose results are utilised by LegUp
to generate hardware. In Figs. 1c and 1d black and red edges are points-to relation for directly and indirectly accessed memory instructions. Blue arrows in
Fig. 1c are the results on Andersen analysis. Figs. 1e and 1f show the memory architecture that is generated by LegUp based on the different pointer analyses.

p, via the label %1 of ¸. Since ¹ indirectly addresses memory
variables via p, pointer analysis is required to determine all
variables that ¹ can point to.

a) Insensitive Andersen analysis: Andersen analysis in-
fers that any dereferencing of p can point to either a or b
during runtime. Andersen analysis relates variables without
considering any instructions, i.e. {(p,a), (p,b)}, as shown by
the blue arrows in Fig. 1c. Based on this output, the HLS tool
infers ¹ may point to either a or b, i.e. {(¹,a), (¹,b)},
as shown by the red edges in Fig. 1c. Since, ¹ can point
to two possible locations, both these memory elements must
be connected in an addressable manner. LegUp supports this
possibility via its memory controller, as shown in Fig. 1e.

b) Flow-sensitive pointer analysis: A flow-sensitive
analysis understands the order in which the accesses to p
happen: ¶ < · < ¸. Hence, when ¸ occurs, the pointer
analysis is aware that the value of p has been updated to
the address of b. Hence, such an analysis can conclude that
¹ can only access b during hardware runtime, i.e. {(¹,b)},
as shown by the red edges in Fig. 1d. This refined points-to
relation can result in simpler memory circuitry for the same
program. For example, when LegUp can identify that ¹ can
only point to exact one location, b, it directly connects ¹ to
b, as shown in Fig. 1f. Additionally, LegUp can also infers
that a can be removed since it is never accessed.

c) Context-sensitive pointer analysis: Suppose we re-
place the function f with int* f(int *q){ return
q;} and its callee with p = f(&b);. For this modified
example, a flow-sensitive analysis generates an imprecise
points-to set for ¹, as in Fig. 1c, because it cannot understand
the context in which function f is called. When a context-
sensitive analysis is applied to this modified example, a precise

points-to set of ¹ can be obtained, as in Fig. 1d.

III. METHOD

In this section, we describe how we augment the LegUp
HLS tool [21] to utilise SVF’s flow-sensitive context-sensitive
pointer analysis. LegUp HLS is built on the LLVM framework
and converts a C program to Verilog, via a series of HLS trans-
formations followed by a Verilog backend generator. Origi-
nally, LegUp applies Andersen analysis [19] whose results it
uses to generate memory addressing between instructions and
variables and also allocates all variables into different LegUp
memories. We discuss how LegUp performs both these tasks,
in §III-A. Then, in §III-B, we discuss how the output of SVF’s
precise pointer analysis can be utilised by LegUp to perform
the same tasks and how we implement SVF in LegUp.

A. Understanding LegUp’s insensitive pointer analysis

Let V be the set of variables in the IR code. Andersen
analysis produces a relation between variables, AnderPts ⊆
V × V . For example, AnderPts = {(p,a), (p,b)} based on
the IR code in Fig. 1b, as shown by the blue arrows in Fig. 1c.

1) Memory addressing: LegUp uses the results of Andersen
analysis to generate memory addressing for all LLVM memory
instructions. Let I be the set of LLVM memory instructions.
LegUp defines a points-to relation InstPts between instruc-
tions and variables, i.e. InstPts ⊆ I ×V , as follows:

InstPts = DirectPts ∪ IndirectPts

where

IndirectPts = {(i, v) | i ∈ I ∧ v ∈ V ∧ ∃vp ∈ V .
(i, vp) ∈ deref ∧ (vp, v) ∈ AnderPts}.



DirectPts is a relation that represents instructions that
directly address variables, where this relation can be ob-
tained from the LLVM source. For example, DirectPts =
{(¶,p),·,p),¸,p)} can be obtained from the IR code
in Fig. 1b, shown as black edges in Fig. 1c. IndirectPts
is a relation that represents instructions that indirectly ad-
dress variables, where this relation is inferred from Andersen
analysis. IndirectPts defines that an instruction i points to
variable v, if instruction i dereferences of a pointer vp, i.e.
(i, vp) ∈ deref , and Andersen analysis states that vp points
to v. For example, since AnderPts = {(p,a), (p,b)} and
(¹,p) ∈ deref , ¹ must be related to both a and b i.e.
IndirectPts = {(¹,a), (¹,b)}. DirectPts , shown as red
edges in Fig. 1c. Together, DirectPts and IndirectPts form a
points-to relation that LegUp uses for memory addressing.

2) Memory allocation: Subsequently, LegUp also uses
InstPts to allocate memory. LegUp can generate two types
of memories: local and global. Local memories (LocalMem)
consists of variables that are connected directly to instructions,
whereas global memories (GlobalMem) consists of variables
that are accessed by instructions via an addressable memory
controller. LegUp defines local and global memories is defined
as follows:

GlobalMem = {v | v ∈ V ∧ ∃i ∈ I .∃v′ ∈ V . v 6= v′ ∧
(i, v) ∈ InstPts ∧ (i, v′) ∈ InstPts}.

LocalMem = V \GlobalMem

where any variable v is implemented in global memory
(GlobalMem) if an instruction i points to not only v but
at least one other variable v′. If all memory instructions
that point to v do not point to any other variable, then v
is implemented in local memory that is directly accessible
without the memory controller. For example, instP ts =
{(¶,p), (·,p), (¸,p), (¹,a), (¹,b)} from code in Fig. 1b,
as shown in Fig. 1c. Based on InstPts , LegUp infers that
LocalMem = {p} and GlobalMem = {a,b}, since ¶, · and
¸ only point to p whereas ¹ can point to both a and b, as
shown in Fig. 1e.

B. Leveraging SVF’s precise pointer analysis within LegUp

SVF’s precise analysis produces a points-to relation between
all LLVM memory instructions and variables, i.e. I × V .
We can configure SVF either as a flow-sensitive analysis
(FSInstPts ⊆ I ×V ) or as a flow- and context-sensitive anal-
ysis (FSCSInstPts ⊆ I ×V ). Additionally, FSCSInstPts ⊆
FSInstPts ⊆ InstPts , since SVF’s flow-sensitive analysis
takes Andersen analysis as input and SVF’s flow- and context-
sensitive analysis takes its flow-sensitive analysis as input.

1) LegUp’s interpretation of SVF output: LegUp can di-
rectly utilise the points-to relation of SVF for memory address-
ing and allocation, i.e. InstPts = FSInstPts or InstPts =
FSCSInstPts . The difference between using SVF’s precise
analysis and Andersen analysis in HLS is that SVF directly
provides HLS with the points-to results in the form of I ×V .
However, when using Andersen analysis, the HLS tool needs
to explicitly translate the output of Andersen analysis (V ×V )

into a usable points-to results for HLS (I×V ). This translation
is the main cause for over-approximation of points-to precision
within HLS, leading to unnecessary memory sharing.

For example, for the code in Fig. 1b, SVF generates
InstPts = FSInstPts = {(¶,p), (·,p), (¸,p), (¹,b)}
since SVF understands that latest address value written to p
before it is dereferences is b, as shown in Fig. 1d. Due to this
refinement of InstPts , LegUp can infers that LocalMem =
{p,b} and GlobalMem = ∅. Hence, the addressable memory
controller can be removed, all variables can be connected
directly to instructions that point to them and a can be
removed since it is never pointed to by any instruction, as
seen in Fig. 1f.

IV. EVALUATION

In this section, we evaluate precise analysis on a set of pro-
grams with non-trivial and challenging use of pointers, from
the PTABen benchmark suite [33]. Our evaluation focuses on
two key questions, which are 1) to what extent does precise
pointer analysis affect the quality of hardware generated by
LegUp HLS? 2) what, if any, is the added cost in terms of
analysis times to adopt precise pointer analysis within HLS?

a) Experimental setup: We evaluate all programs on
three design points. The first design point, IA, is LegUp’s
original insensitive Andersen analysis. The second design
point, FS, is a flow-sensitive SVF analysis implemented within
LegUp. The third design point, FSCS, is a flow- and context-
sensitive SVF analysis implemented within LegUp. We utilise
LegUp’s pure hardware, which allocates C memories as FPGA
registers or RAMs. Our synthesis tool is Quartus v15.0, which
targets a Cyclone V FPGA.

b) Selecting and modifying programs from PTABen:
The PTABen benchmark suite comprises over 400 hand-
written programs that tests for correctness and precision of
pointer analyses, all of which are relatively new to the HLS
community. We identified 50 programs whose objective is
to test the flow- and context sensitivity of pointer analysis
(two subfolders). Out of these 50 programs, we are able to
synthesise 32 programs since they do not require dynamic
memory allocation or recursion. We minimally modify these
32 programs from PTABen for our purposes. We replace
PTABen’s backdoor calls to check the precision of points-to
sets of various pointer instructions with non-inlined functions
that dereference these pointers, which enables hardware instru-
mentation of points-to set within HLS-generated hardware.

1) Results of synthesising PTABen programs: Fig. 2 shows
the effects of precise pointer analysis on the set of programs
we synthesise from the PTABen benchmark suite.

a) Points-to ratio: Fig. 2a shows the points-to ratio of
the different pointer analyses, which is the number of points-
to relation, |InstPts|, divided by the number of instructions,
|I |. The best achievable ratio is one, whereby every memory
instruction points to one location. We see that the IA’s points-
to ratio is always higher than or equal to the points-to ratios
of FS or FSCS. On average, FS and FSCS analyses reduces
points-to ratio by 11% and 17% respectively, compared to IA.
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Fig. 2. Pointer analysis metrics by programs and by pointer analysis type. We enumerate the results of synthesising the following PTABen programs (from
cs_tests and fs_tests) in this order: cs0-15.c, cs17-20.c, simple1-3.c, global1-5.c, branch1-3.c and strong-update.c.

b) Hardware resources: Typically, the reductions in
points-to ratio results in hardware with smaller area. Fig. 2b
shows the LUT savings of FS and FSCS relative to the LUT
utilisation of IA. FSCS reduces the LUT utilisation of 25 out
of 32 programs, where these reductions come from either
removing the memory controller and avoiding unnecessary
memory sharing. On average, FS and FSCS analyses reduce
LUT utilisation by 28% and 60%, with maximum of 86% and
97%, respectively compared to IA.

Although precise analysis reduces the points-to ratio of
29 programs. they are four cases where LegUp’s hardware
generation does not take advantage of this refinement. This
is typically because LegUp generates the same GlobalMem
for all three analyses, despite FSCSInstPts ⊆ FSInstPts ⊂
InstPts . This discrepancy between points-to ratio reduction
and resource reduction suggests that current HLS memory
generation may be sup-optimal for non-trivial pointer use.

c) Hardware runtimes: In addition to LUT savings,
precise pointer analysis also improve hardware runtimes, since
avoiding the memory controller and unnecessary memory
sharing improve access latencies and clock frequencies. Fig. 2c
show the hardware speedups gained by FS and FSCS relative
to hardware runtimes of IA. On average, FS and FSCS analyses
improve hardware runtimes by 17% and 42%, with maximum
of 2× and 2.6×, respectively compared to IA.

d) Analysis time overheads: Fig. 2d shows the analysis
times of all three analyses, where IA analysis is always
the fastest. The wall-clock times of all these analyses are
in the range of milliseconds, which suggests that the cost

of employing more precise pointer analysis is insignificant
compared to hardware synthesis.

V. CONCLUSION

In this paper, we evaluate the effects of precise pointer
analysis within the context of HLS. We augment the LegUp
HLS tool to utilise a flow- and context-sensitive pointer
analysis. Then, we evaluate both the effects of insensitive and
precise analyses on programs from the PTABen benchmark
suite. Our evaluation demonstrates that there exist programs
where sensitive pointer analysis can lead to significantly
improved hardware, at the cost of a few extra milliseconds of
compilation time. On average, precise pointer analysis reduces
LUT utilisation by 60%, with a maximum of up to 97%.
Overall, we show that, for programs with non-trivial use of
pointers, precision of pointer analysis plays an important role
in reducing unnecessary memory sharing. As the complexity
of pointer-based programs that are synthesisable via HLS
increases, points-to precision will be increasingly important.
We hope that this work acts as the catalyst to explore future
directions in synthesising pointer-based programs.
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